CONVERSION OF 2,5-DIALKYL-1,3,4-OXADIAZOLES INTO 4-SUBSTITUTED 3,5-DIALKYL-1,2,4-TRIAZOLES

M. S. Skorobogatova, N. P. Zolotareva, and Ya. A. Levin Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 2, pp. 372-374, 1968 UDC 547.792'793: 4.542.953.2

2,5-Dialkyl-1,3,4-oxadiazoles react on heating with primary amines to form 4-substituted 3,5-dialkyl-1,2,4-triazoles, which is a convenient method for synthesizing these almost unknown compounds.

It has been shown previously [1] that 2,5-diphenyl-1,3,4-oxadiazole reacts with aromatic amines on heating to form 4-aryl-3,5-diphenyl-1,2,4-triazoles. In view of the fact that 2,5-dialkyl-1,3,4-oxadiazoles (I) have also become accessible compounds [2], it was of interest to study their behavior with primary amines with the object of obtaining 3,5-dialkyl-1,2,4-triazoles with various substituents in position 4 (III). Hitherto, there has been only old patent information on the participation of dimethyloxadiazole in this reaction [3].

It has been found that on being heated with aromatic amines to 200° C, compounds I are converted into triazoles, the oxygen atom being replaced by a > NR group (see table). A noncyclic addition product (II) is probably formed as intermediate

$$Alk - \bigcup_{i=1}^{N} -Alk + H_2N - Ar \longrightarrow \begin{bmatrix} Alk - \bigcup_{i=1}^{N} -Alk \\ ArO & NH_2 \end{bmatrix} \longrightarrow Alk - \bigcup_{i=1}^{N} -Alk \\ H1$$

The use in this reaction of hexamethylenediamine and 3-amino-1, 2, 4-triazole enables bistriazoles to be obtained, as well.

EXPERIMENTAL

A mixture of 0.025 mole of I and 0.025 mole of a primary amine was heated in an open flask at 200-210°C for the time given in the table. The pure compounds III were obtained by two or three vacuum fractionations; they consisted of colorless or faintly yellowish crystalline substances or viscous liquids which crystallized on standing. The reaction product obtained from 3-amino-1, 2, 4-triazole was purified by crystallization from methanol.

REFERENCES

- 1. Ya. A. Levin and M. S. Skorobogatova, KhGS [Chemistry of Heterocyclic Compounds], 339, 1967.
- 2. Ya. A. Levin and M. S. Skorobogatova, KhGS [Chemistry of Heterocyclic Compounds], 1128, 1967.
- 3. Schering-Kahlbaum A. G., German patent 574944, 1933; C. A., 27, 4541, 1933.

20 March 1967

Arbuzov Institute of Organic and Physical Chemistry, AS USSR, Kazan

'PI	— ЭiΥ ⁄⁄ο	8 75	2 85	2 84	2 47	7 40	7 74	3 70	9 54	4 32	8 24	9 63	7 64	0 44	41	5 78
% p	z 	20.88	19.52	19.52	19.52	18.17	18.17	17.13	14.99	43.94	25.28	18,33	17.27	16.20	15.05	14.75
Calculated %	н	7.51	7.96	7.96	7.96	7.41	7.41	7.81	5.05	6.29	9.70	8.35	8.70	8.16	7.57	1
Ca	Ö	71.61	72.52	72.52	72.52	67.51	67.51	68.54	51.44	49.77	65.02	73.32	74.03	69.46	77.38	l
%	z	20.81	19.21	19.48	19,30	18.37	18.03	16.91	15.29	44.19	24.97	17.96	16.58	15.84	15.03	14.94
Found, 6	н	7.50	7.89	8.00	7.82	7.09	7.65	7.62	5,19	6.32	9.79	8.23	8.95	7.96	7.60	
F	C	71.89	72.66	72.21	72.33	66.46	67.49	68.30	51.46	49.90	64.91	72.96	73,48	69.35	77.36	
Empirical formula		$C_{12}H_{15}N_3$	C ₁₃ H ₁₇ N ₃	C ₁₃ H ₁₇ N ₃	C ₁₃ H ₁₇ N ₃	C ₁₃ H ₁₇ N ₃ O	C ₁₃ H ₁₇ N ₃ O	$C_{14}H_{19}N_3O$	$C_{12}H_{14}BrN_3$	C ₈ H ₁₂ N ₆	C ₁₈ H ₃₂ N ₆	$C_{14}H_{19}N_3$	$C_{15}H_{21}N_3$	C ₁₅ H ₂₁ N ₃ O	$C_{18}H_{21}N_3$	$C_{18}H_{27}N_3$
Bp, C (pressure,	(mm	129—132 (0.035)	198 - 199 (11)	215 (10)	210—212 (9)	187—189 (0.035)	148—150 (0.05)	237—239 (11)	236—240 (10)	1	275 (11)	134—138 (0.032)	130-134 (0.032)	154—158 (0.035)	143—146 (0.035)	245 (11)
Reaction Mp, °C		97—98	1	112—113	63—65	210-211	83-84	80—81	99—100	229—231	l	89—29	29—31	29—30	110—111	51—53
		-	12	4	-	=	5.5	2	24	=	6.5	10	14	30	16	-
à	H .	C_6H_5	$o ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$m ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$p ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$o ext{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4$	$p ext{-}\mathrm{CH_3OC_6H_4}$	$p ext{-} ext{C}_2 ext{H}_5 ext{OC}_6 ext{H}_4$	$p ext{-BrC}_6 ext{H}_4$	Z-T Z-	R	C_6H_5	$p ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$p ext{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4$	α - $C_{10}H_7$	C_6H_5
Ę	4								C ₂ H ₅					n-C ₃ H ₇		n-C ₅ H ₁₁

Z __ Z _ à